Exercise 3

(a) Find the slope of the tangent line to the parabola $y=4 x-x^{2}$ at the point $(1,3)$
(i) using Definition 1
(ii) using Equation 2
(b) Find an equation of the tangent line in part (a).
(c) Graph the parabola and the tangent line. As a check on your work, zoom in toward the point $(1,3)$ until the parabola and the tangent line are indistinguishable.

Solution

Definition 1 and Equation 2 give two ways of calculating the slope of a tangent line.

$$
\begin{array}{ll}
\text { Definition 1: } & m=\lim _{x \rightarrow a} \frac{f(x)-f(a)}{x-a} \\
\text { Equation 2: } & m=\lim _{h \rightarrow 0} \frac{f(a+h)-f(a)}{h}
\end{array}
$$

Part (a)
The function in this exercise is $f(x)=4 x-x^{2}$, and the value of x that we want to know the tangent line at is $a=1$. Find m with Definition 1.

$$
\begin{aligned}
m=\lim _{x \rightarrow 1} \frac{f(x)-f(1)}{x-1}=\lim _{x \rightarrow 1} \frac{\left(4 x-x^{2}\right)-\left[4(1)-(1)^{2}\right]}{x-1} & =\lim _{x \rightarrow 1} \frac{4 x-x^{2}-3}{x-1} \\
& =-\lim _{x \rightarrow 1} \frac{x^{2}-4 x+3}{x-1} \\
& =-\lim _{x \rightarrow 1} \frac{(x-3)(x-1)}{x-1} \\
& =-\lim _{x \rightarrow 1}(x-3) \\
& =-(1-3) \\
& =2
\end{aligned} \begin{aligned}
m=\lim _{h \rightarrow 0} \frac{f(1+h)-f(1)}{h} & =\lim _{h \rightarrow 0} \frac{\left[4(1+h)-(1+h)^{2}\right]-\left[4(1)-(1)^{2}\right]}{h} \\
& =\lim _{h \rightarrow 0} \frac{(4+4 h)-\left(1+2 h+h^{2}\right)-(4-1)}{h} \\
& =\lim _{h \rightarrow 0} \frac{2 h-h^{2}}{h} \\
& =\lim _{h \rightarrow 0}(2-h)=2-0=2
\end{aligned}
$$

Part (b)

The aim is to find the equation of the line with slope 2 that passes through $(1,3)$. Start with the general formula of a line.

$$
y=m x+b
$$

Since the slope is $2, m=2$.

$$
y=2 x+b
$$

Use the fact that the line passes through $(1,3)$ to determine b.

$$
\begin{gathered}
3=2(1)+b \\
3=2+b \\
b=1
\end{gathered}
$$

Therefore,

$$
y=2 x+1 .
$$

Part (c)
Below is a plot of the parabola with the tangent line at $x=1$.

Zoom in to the interval $0.9 \leq x \leq 1.1$.

